
Technical aspects of Offshore Wind Farms

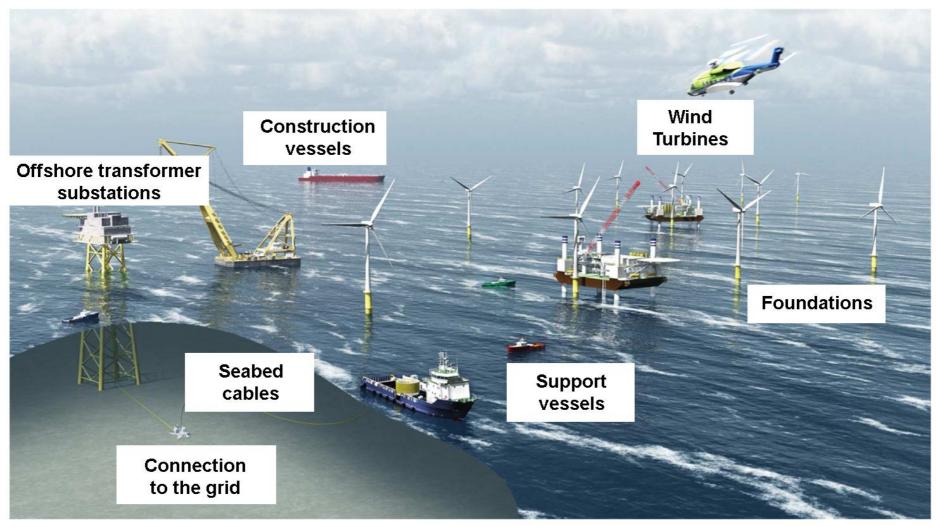
Consultations of the Guide to OWF

Michał Gronert 15.09.2011

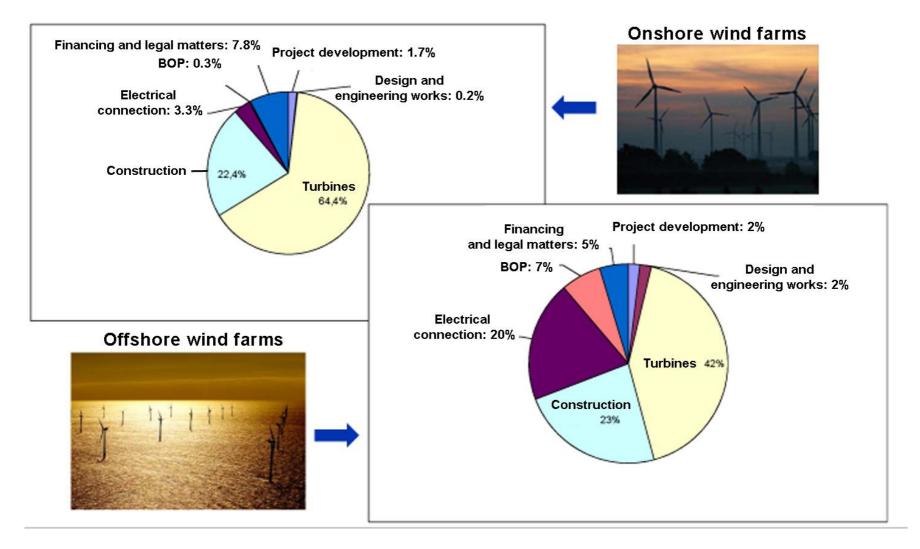
DNV - Independent foundation since 1864

Offshore Wind Energy - compilation of DNV competencies

25 years of hands-on experience with wind turbines


40+ years of offshore oil & gas experience

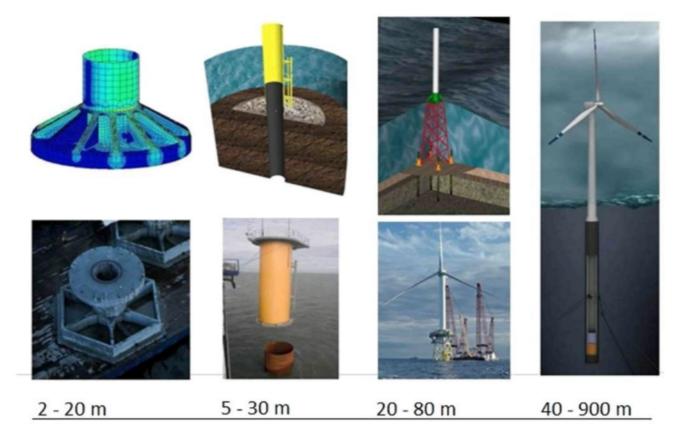
Global leader in the project risk management and in offshore wind farm certification



Main technical elements of offshore wind farms

Technical aspects of Offshore Wind Farms 15.09.2011 © Det Norske Veritas AS. All rights reserved. MANAGING RISK

Distribution of costs of offshore and onshore wind farms



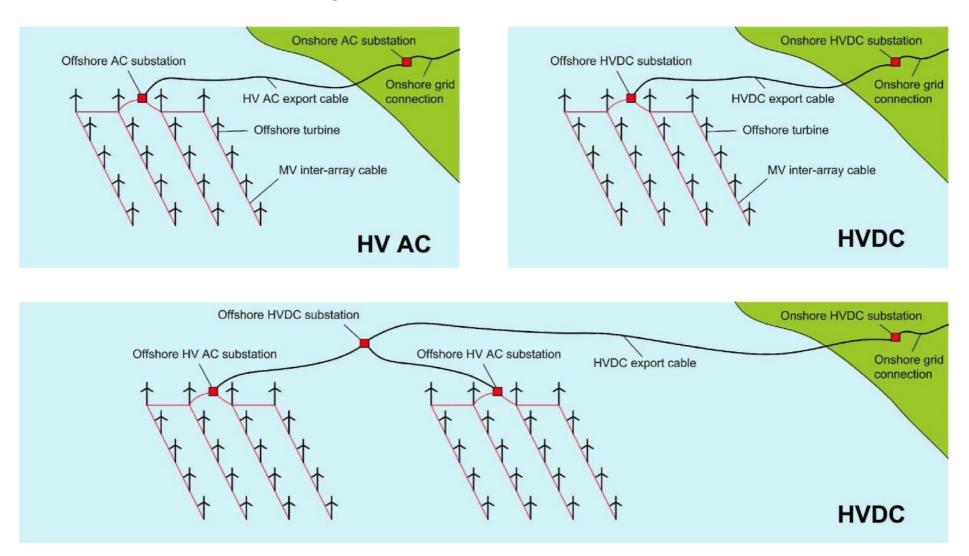
Basic types of foundations for offshore wind farms

- Gravity base
- Monopile
- Jacket
- Floating

Offshore wind turbines

Range of nominal power

- 3.0 MW 3.0 6.0 MW
- 5.0 MW 5.0 20.0 MW (forecasted)



Examples of the largest available wind turbines:

6M REpower- 6,15 MW used in the projects: 5M REpower- 5,075 MW used in the project: Vestas V90 - 3MW, in the project: BARD 5.0 in the project: Siemens SWT-3.6-107 in the project: Thornton Bank phase II, Belgium 148 MW Ormonde 150 MW Thanet, UK 300 MW Hooksiel, Germany Gunfleet Sands, UK 173 MW

Offshore wind farm grid connection

MANAGING RISK

Examples of transformer substations

Project	Horns Rev I (DK)	<image/>	Barrow (UK)	Lillgrund (S)
Wind farm size	80 x 2 = 160 MW	72 x 2.3 = 165.6 MW	30 x 3 = 90 MW	48 x 2.3 = 110 MW
Commissioning	Dec 2002	Jul 2003	Jun 2006	Jun 2008
Water depth	6 14 m	6 10 m	15 20 m	4 8 m
Distance to shore	14 20 km	10 km	7.5 km	7 km
Foundation	3 piles	gravity	monopile	gravity
Voltages	33 / 150 kV	33 / 132 kV	33 / 132 kV	33 / 138 kV

Examples of projects certified by DNV

Barrow (UK) – 90MW Bligh Bank (Belgium) – 330MW Borkum West II (Germany) – 400MW Burbo Banks (UK) – 90MW Egmond aan Zee (Netherlands) – 108MW Greater Gabbard (UK) – 500MW Gunfleet Sands (UK) – 172MW Horns Rev I & II (Denmark) – 160MW and 209MW Jeju (South Korea) – 21MW Kentish Flats (UK) – 90M Lillgrund (Sweden) – 110MW Lynn and Inner Dowsing (UK) – 90MW

MANAGING RISK

Typical OWF project Schedule

- 2011: Start of wind measurements
- 2012: Preliminary location specification
- 2013: Selection of turbines and their distribution design
- 2014: OWF Technical design certification
- 2015: Stage 1 construction preparation
- 2016: Stage 1 construction
- 2017: Stage 2 construction, Reassessment of Stages 3 and 4
- 2018: Stage 3 construction
- 2019: Stage 4 construction

London Array Phase I project Schedule

- 2001: Initial environmental analyses
- 2005: Start of wind measurements mast installation
- 2005 2007: Planning
- 2008: Conclusion of contracts with suppliers
- 2009: Construction permit
- 2010: Onshore transformer substation construction
- 2011: Initiation of the construction phase of the offshore parts of the project
- 2011: December planned power generation test
- 2012: Construction completion

Gunfleet Sands project Schedule

2002: Preliminary location assessment
2004: Permit to execute Stage 1
2006: Permit to execute Stage 2
2008: Onshore project infrastructure construction
2008: Initiation of the construction of both Stages
2008: Offshore transformer substation construction
2009: Measuring mast on the transformer
2010: Commissioning of the offshore wind farm

Examples of productivity data and power distribution per km²

Gunfleet Sands 173 MW / 17.5 km² = 9.9 MW / km², Turbines: SWT – 3-6 productivity 37.6%, 2009

Robin Rigg 180MW / 18 km² = 10 MW / km²,Turbines: Vestas V90productivity 35%, 2009

Lynn, 97 MW / 10 km² = 9.7 MW / km², Turbines: SWT – 3-6 productivity 39%, 2009

Thanet, $300 \text{ MW} / 35 \text{ km}^2 = 8.6 \text{ MW} / \text{km}^2$, Turbines: Vestas V90 productivity 36.5%, 2010

Summary:

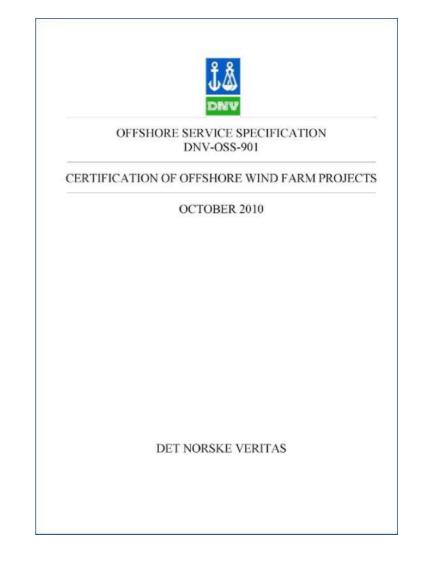
- Typical productivity: 37%
- Power distribution: 9.5MW/ km²
- Turbine power: 3.0MW -6.0MW

DNV "Offshore" - requirements and recommended practices

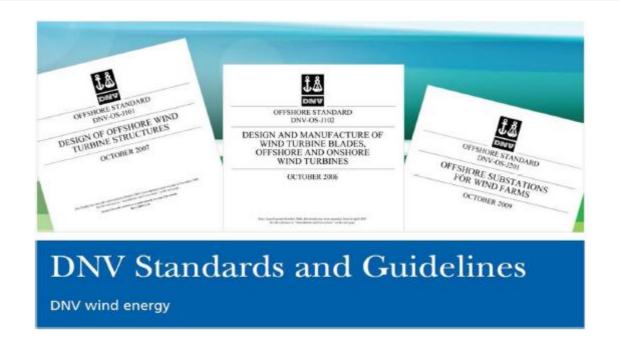
OFFSHORE SERVICE SPECIFICATIONS Provide principles and procedures of DNV classifications, certification and consultancy services

OFFSHORE STANDARDS

Provide technical provisions and acceptance criteria for general use by the offshore industry as well as the technical basis for DNV offshore service

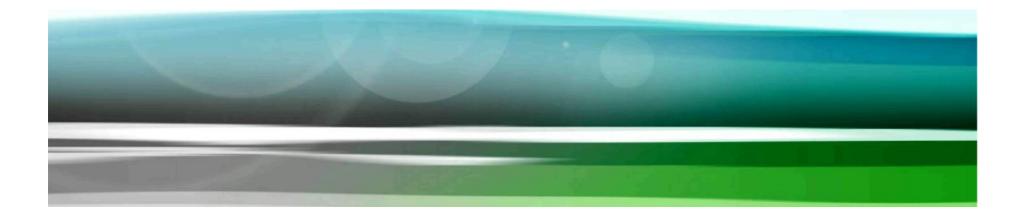

RECOMMENDED PRACTICES

Provide proven technology and sound engineering practice as well as guidance for the higher level Offshore Service Specifications and Offshore Standards


DNV-OSS-901

- Certification of Offshore Wind Farm Projects
- Presents the principles and procedures for DNV services with respect to certification of Offshore Wind Farm Projects.
- Introduces a levelled description of certification involvement during all phases of an offshore wind farm's life; from assessment of site conditions to in-service.
- Assists in planning the certification by defining the tasks for a verification plan allowing a transparent and predictable certification scope of work as well as defining terminology for certification and verification involvement.

DNV standards


DNV Standard DNV-OS-J101: Design of Offshore Wind Turbine Structures

- DNV Standard DNV-OS-J102: Design and Manufacture of Wind Turbine Blades
- DNV Standard DNV-OS-J201: Design of Offshore Substations

Safeguarding life, property and the environment

www.dnv.pl

